
Fractional integral associated to generalized cookie-cutter set and its physical interpretation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 5569

(http://iopscience.iop.org/0305-4470/30/15/036)

Download details:

IP Address: 171.66.16.108

The article was downloaded on 02/06/2010 at 05:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 5569–5577. Printed in the UK PII: S0305-4470(97)78153-8

Fractional integral associated to generalized cookie-cutter
set and its physical interpretation

Zu-Guo Yu, Fu-Yao Ren and Ji Zhou
Institute of Mathematics, Fudan University, Shanghai 200433, People’s Republic of China

Received 11 June 1996, in final form 28 November 1996

Abstract. This paper is based on Nigmatullin’s study. When the ‘residual’ memory set is a
generalized cookie-cutter set on [0, T ], using various hypotheses it is proved that the fractional
exponent of a fractional integral is not uniquely determined by the fractal dimension of the
generalized cookie-cutter set. It is determined by lnP1/ ln ξ1 of self-similar measure (or infinite
self-similar measure)µ on this generalized cookie-cutter set, and can run over all positive real
numbers.

1. Introduction

When we describe a structure of the evolution of a physical system far from thermodynamic
equilibrium: in amorphous materials [2-4], in the description of structural relaxation of high-
Tc oxide superconductors [5], in the process of plastic deformation [6] and fracture of solids
[7], in the description of solid solutions [8] and the macrostructure of martensite [9], etc,
the medium exhibits memory. The existence of memory means that if at timeτ a force
f (τ) acts on the system, then there arises a fluxJ whose magnitude at timet > τ is given
through a memory functionm(τ) by the equation

J (t) =
∫ t

0
m(t − τ)f (τ) dτ. (1)

For any givenT ∈ (0,∞), if the ‘residual’ memory set is a Cantor’s fractal set
(or Cantor’s k-bars) in [0, T ] generated byϕ1 = ξx, ϕ2 = ξx + (1 − ξ)T (or ϕj =
ξx + (j − 1)ξT + (j − 1) (1−kξ)T

k−1 , j = 1, 2, . . . , k), and if the total number of remaining
states in each stage of the division of this set is normalized to unity

J (t) ' AνT −ν [0(ν)]−1
∫ t

0
(t − t ′)ν−1f (t ′) dt ′

= AνT −ν tνD̂−νf (t) (2)

(obtained by Nigmatullin [1]) whereν = ln 2/ ln(1/ξ) (or ν = ln k/ ln(1/ξ)) is the fractal
dimension of Cantor’s set (or Cantor’sk-bars),Aν = [

√
2(1− ξ)T ]−ν for Cantor’s set, and

Aν = exp[−I1/ ln(1/ξ)] where I1 =
∫∞

0
f ′(y)
f (y)

ln y dy andf (y) = 1−e−ky/(k−1)

k(1−e−y/(k−1))
for Cantor’s

k-bars,0(ν) is the gamma function, and where the fractional exponent of fractional integral

D̂−νf (t) = (0(ν))−1
∫ 1

0
(1− u)ν−1f (tu) du (3)

= [ν0(ν)]−1
∫ 1

0
f ((1− u1)t) duν1 (4)
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is equal to the fractal dimension of Cantor sets = ln 2/ ln ξ (or Cantor’sk-bars = ln k/ ln ξ ),
furthermore, the physical interpretation of the fractional integral is given.

In this paper, we denote the set of all real numbers byR, the set of all complex numbers
by C and the set of all positive integer numbers byZ+.

If the ‘residual’ memory set is a self-similar set which is generated by similarities
Sjx = ξjx + bj (0 < ξj < 1, b1 = 0 < b2 < · · · < bK = T (1− ξK), j = 1, 2, . . . , K)
on [0, T ] or a generalized self-similar set which is generated by a family of similarities
{Sn,j (x) = ξn,j x + bn,j : 0 < ξn,j < 1, bn,j ∈ R, j = 1, 2, . . . , Kn}n∈Z+ on [0, T ], in [10],
it is proved that the fractional exponent of fractional integral is not uniquely determined by
the fractal dimension of the self-similar set or generalized self-similar set, it is determined
by lnP1/ ln ξ1 of self-similar measure

µ =
K∑
j=1

Pjµ ◦ S−1
j 0< Pj < 1

K∑
j=1

Pj = 1

on this self-similar set or of infinite self-similar measure

µ′ =
∞∑
j=1

Pjµ
′ ◦ S−1

j 0< Pj < 1
∞∑
j=1

Pj = 1

on the generalized self-similar set, and it can run over all positive real numbers. Naturally
there exists the problem: Do conclusions in [10] hold when the ‘residual’ memory set is a
generalized cookie-cutter set? In this paper, we obtain a positive answer.

2. Construction of generalized cookie-cutter sets

For any givenT ∈ (0,∞), denoteE0 = [0, T ], {ϕn,j (x) : E0 −→ E0, j = 1, 2, . . . , Kn <
∞}n∈Z+ is a family of functions satisfying:

(1) ϕn,j : E0 −→ ϕn,j (E0) is 1 to 1 mapping and Int(ϕn,i(E0))∩ Int(ϕn,j (E0)) = ∅(i 6=
j) for any n and 16 i, j 6 Kn.

(2) For all n, the mappingSn : ∪Knj=1ϕn,j (E0) −→ E0, defined bySn|ϕn,j (E0) = ϕ−1
n,j is

C1+γ differentiable, i.e. differentiable with a Ḧolder continuous derivativeDSn satisfying
|DSn(x)−DSn(y)| < cn|x−y|γ for somecn > 0, and|DSn(x)| > c0 > 1 for some constant
numberc0 and allx ∈ ∪Knj=1ϕn,j (E0).

Then {Sn}n∈Z+ is called a sequence ofcookie-cutter maps. Now |Dϕn,j (x)| < c−1
0 <

1, ∀x ∈ E0. For a natural numbern, let In = {1, 2, . . . , Kn}, 3n = I1× I2× · · · × In,
Ej1j2···jn = ϕ1,j1 ◦ ϕ2,j2 ◦ · · · ◦ ϕn,jn(E0) E(n) = ∪j1j2···jn∈3nEj1j2...jn .

It is obvious thatEj1j2···jn ⊂ Ej1j2···jn−1, E(n) ⊂ E(n− 1), then

ET = ∩n>1E(n) = ∩n>1 ∪j1j2···jn∈3n Ej1j2···jn (5)

is called thegeneralized cookie-cutter set. From theorems 3 and 4 of [14], we can estimate
its fractal dimensions (denotean,j = supx∈E0

|Dϕj(x)|, bn,j = infx∈E0 |Dϕj(x)|, βn andβ
n

satisfy equations
∏n
i=1(

∑Ki
j=1 a

βn
i,j ) = 1 and

∏n
i=1(

∑Ki
j=1 b

β
n

i,j ) = 1, then lim infn−→∞ β
n
6

s 6 lim infn−→∞ βn).

Examples. If Kn = K andϕn,j = ϕj for any n, thenET is a cookie-cutter set defined by
Bedford [11]. Furthermore, ifK = 2, E1 = [0, T3 ], E2 = [ 2T

3 , T ] and S(x) = 3xmodT ,
thenET is a Cantor set. Generally, Cantork-bars and self-similar sets (see [10]) are all
cookie-cutter sets, and all cookie-cutter sets are generalized cookie-cutter sets.
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3. Memory measures and (infinite) self-similar measures

Now we concretely construct the memory measure onET . For a given family of probabilities
{Pn,j } satisfying

Kn∑
j=1

Pn,j = 1 (6)

let the memory measure onE(n) be defined by dµn(τ) = mn(τ) dτ , where

mn(τ) =
∑

ji ...jn∈3n
P1,j1 . . . Pn,jnχEj1 ...jn (τ )/|Ej1...jn | (7)

and

χEj1 ...jn (τ ) =
{

1 τ ∈ Ej1...jn

0 otherwise.

Then the support set supp(µn) of memory measureµn is E(n) and
∫ T

0 dµn (τ) =∫
E(n)

dµn (τ) = 1. For anyA ⊂ E0, we also have∫
A

dµn (τ) =
Kn∑
j=1

Pn,j

∫
A

dµn−1 ◦ ϕ−1
n,j (τ ) (8)

and supp(µ1) ⊃ supp(µ2) ⊃ · · ·.
For anyEj1···jk and natural numberl, we haveµk+l(Ej1···jk ) = µk(Ej1...jk ). For any

continuous real functiong(τ) onR, g is uniformly continuous onE0, hence for anyε > 0,
there existsδ > 0 such that if|U ′| < δ,U ′ ⊂ R, we have

max
τ∈U ′

g(τ)−min
τ∈U ′

g(τ) < ε.

We want to prove that{∫R g dµk}∞k=1 is a Cauchy sequence. Sincerk,j =
supx∈E0

|Dϕk,j (x)| < c−1
0 < 1, rk = max{rk,1, . . . , rk,Kk } < c−1

0 < 1, we can takek
large enough such that all|Ej1···jk | < δ. Then∣∣∣∣ ∫
R
g dµk −

∫
R
g dµk+l

∣∣∣∣ 6 ∑
j1...jk∈3k

∣∣∣∣ ∫
Ej1 ...jk

g dµk −
∫
Ej1 ...jk

g dµk+l

∣∣∣∣
6

∑
j1...jk∈3k

[∣∣∣∣ ∫
Ej1 ...jk

g dµk −mj1...jk
µk(Ej1...jk

)

∣∣∣∣
+
∣∣∣∣mj1···jkµk+l(Ej1···jk )−

∫
Ej1···jk

g dµk+l

∣∣∣∣]
6

∑
j1···jk∈3k

2(Mj1···jkµk(Ej1···jk )−mj1···jkµk+l(Ej1···jk ))

=
∑

j1···jk∈3k
2(Mj1···jk −mj1···jk )µk(Ej1···jk ) 6 2εµ0(E0)

whereMj1···jk = maxτ∈Ej1···jk g(τ ),mj1···jk = minτ∈Ej1···jk g(τ ), hence{∫R g dµn} converges as
k −→ ∞. It is easy to see that limn−→∞

∫
R g dµk is a continuous linear functional on

the space of continuous functions. From the Rieze representation theorem, there exists a
measureµ satisfying

∫
ET

dµ(τ) = 1, supp(µ) = ET such that

lim
n−→∞

∫
R
g dµn =

∫
R
g dµ (9)
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i.e.

µn −→ µ (weakly converge). (10)

For any continuous complex functiong1(τ ), we can writeg1(τ ) = u(τ) + iv(τ), where
u(τ), v(τ ) are continuous real functions, hence

lim
n−→∞

∫
R
u dµn =

∫
R
u dµ lim

n−→∞

∫
R
v dµn =

∫
R
v dµ.

Hence limn−→∞
∫
R g1 dµn =

∫
R g1 dµ. In particular, forg1(τ ) = e−pτ , p ∈ C, we have

lim
n−→∞

∫ ∞
0

e−pτdµn (τ) =
∫ ∞

0
e−pτ dµ(τ). (11)

We callµ the memory measureon generalized cookie-cutter setET . If lim n−→∞Kn =
K <∞, limn−→∞ Pn,j = Pj and limn−→∞ ϕn,j = ϕj , then from (8), we have∫

A

dµ (τ) =
K∑
j=1

Pj

∫
A

dµ ◦ ϕ−1
j (τ )

i.e.

µ(·) =
K∑
j=1

Pjµ ◦ ϕ−1
j (·). (12)

If a probability measureµ on a generalized cookie-cutter setET satisfies (12), thenµ is
called theself-similar measureonET and{Pj } is called the weights. Similar to Hutchinson
[12], we can prove the uniqueness of the self-similar measure. Hence by uniqueness, the
memory measureµ is the self-similar measure corresponding to weights{Pj }Kj=1.

If lim n−→∞Kn = ∞, limn−→∞ Pn,j = Pj and limn−→∞ ϕn,j = ϕj , then from (8), we
have ∫

A

dµ (τ) =
∞∑
j=1

Pj

∫
A

dµ ◦ ϕ−1
j (τ )

i.e.

µ(·) =
∞∑
j=1

Pjµ ◦ ϕ−1
j (·). (13)

4. Flux function and memory function

We consider

Jn(t) =
∫ t

0
mn(t − τ)f (τ) dτ. (14)

If f (τ) is a generating function, i.e.f (τ) = 0 for τ < 0, f (τ) has only finite many first class
discontinuous points on any [a, b] ⊂ [0,∞) and |f (τ)| 6 Mes0τ for τ ∈ [0,∞), s0 > 0.
Performing Laplace transform on both sides of (14), from the product theorem of Laplace
transform, we have

Jn(p) = Mn(p)F (p), p ∈ C (15)



Fractional integral and physical interpretation 5573

where

Jn(p) =
∫ ∞

0
exp(−pt)Jn(t) dt (16)

Mn(p) =
∫ ∞

0
exp(−pτ)mn(τ) dτ. (17)

Noting that

Mn(p) =
∫ ∞

0
e−pτ dµn (τ) (18)

M(p) =
∫ ∞

0
e−pτ dµ(τ) (19)

from (11), we have

lim
n−→∞Mn(p) = M(p). (20)

Hence from (15), we have

J (p) = M(p)F(p) (21)

whereJ (p) = limn−→∞ Jn(p).
Now we assumeϕ1(x) = ξ1x, 0 < ξ < 1. DenoteEj = ϕj (E0) = [aj , bj ],

j = 2, 3, . . . , K (or j = 2, 3, . . .), and letϕ̃j (x) = ϕj (x) − aj . From the definition of the
generalized cookie-cutter set, we know that 0< aj < T , j = 2, 3, . . . , K (or j = 2, 3, . . .).
Hence, from (12) and (13), we have

M(p) = P1M(ξ1p)+
K∑
j=2

Pj

∫
e−pϕ(τ)dµ(τ)

= P1M(ξ1p)+
K∑
j=2

Pje
−ajp

∫
e−pϕ̃j (τ ) dµ(τ). (22)

and

M(p) = P1M(ξ1p)+
∞∑
j=2

Pj

∫
e−pϕ(τ) dµ(τ)

= P1M(ξ1p)+
∞∑
j=2

Pje
−ajp

∫
e−pϕ̃j (τ ) dµ(τ). (23)

Now we want to obtain the approximate solution of functionM(p) satisfying (22) or
(23). Since| ∫ e−pϕ̃j (τ ) dµ(τ)| 6 1 when Re(p) > 0, hence when Re(p) is large enough,
we have

M(p) = P1M(ξ1p)+ ◦(1) (as Re(p) −→ +∞). (24)

The unique solution of function equation

M(p) = P1M(ξ1p) (25)

has the form

M(p) = Ap−ν (26)

whereA is a constant depending only on{Pj }Kj=1 and{ϕj }Kj=1 (or {Pj }∞j=1 and{ϕj }∞j=1), and

ν = lnP1/ ln ξ1. (27)
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Hence when Re(p) is large enough,

M(p) ≈ Ap−ν (28)

and

J (p) ≈ Ap−νF (p). (29)

We perform Laplace inversion transform for (28) and (29) and obtain

m(τ) ≈ A(0(ν))−1τ ν−1 (30)

J (t) ≈ A(0(ν))−1
∫ t

0
(t − τ)ν−1f (τ) dτ

= Atν(0(ν))−1
∫ 1

0
(1− u)ν−1f (ut) du

= AtνD−νf (31)

where

D−νf = (0(ν))−1
∫ 1

0
(1− u)ν−1f (ut) du

= (ν0(ν))−1
∫ 1

0
f ((1− u1)t) duν1 (32)

where (32) is a fractional integral. Then from (31), we establish the connection between
the fractional integral and the flux. In particular, if we assume thatβ ∈ (0,∞) is the
fractal dimension of generalized cookie-cutter setET , whenP1 = ξβ1 and

∑K
j=1Pj = 1 (or

P1 = ξβ1 and
∑∞
j=1Pj = 1), from (27), we haveν = β, thus we establish the connection

between the fractional integral and the dimension of the generalized cookie-cutter set.
Now we want to ask the question: When can we write dµ(τ) = m(τ) dτ? In the

following we give a sufficient condition. Sinceµ has compact support set andM(p) is
the Laplace transform ofµ, thenM(p) is an analytic function in Re(p) > 0. From (24)
and (28), when|p| −→ ∞, we obtain thatM(p) converges to 0 uniformly with respect to
arg(p). If we assume that

∫ a+i∞
a−i∞ M(p) dp absolutely converges for anya > 0, then from

Laplace inverse transform theorem,M(p) is the Laplace transform of function

m(τ) = 1

2π i

∫ a+i∞

a−i∞
epτM(p) dp

i.e. M(p) = ∫∞
0 m(τ)e−pτ dτ , dµ(τ) = m(τ) dτ . Then from the product theorem of

Laplace transform, we have

J (t) =
∫ t

0
m(t − τ)f (τ) dτ.

5. Physical interpretations

If the maps{ϕj } satisfy ∪Kj=1ϕj (E0) = E0 (or ∪∞j=1ϕj (E0) = E0) and P1 = ξ1, in this
case the fractional exponentν = 1. It follows from (31) thatJ (t) is related tof (τ)
through the complete integral and corresponds to the case of complete memory. If all
rj = supx∈E0

|Dϕj(x)| −→ 0(ν −→ 0), then from (22) (or (23)), it follows that

M(p) = P1+
K∑
j=2

Pje
−paj (33)
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or

M(p) = P1+
∞∑
j=2

Pje
−paj . (34)

In the T representation, expression (33) (or (34)) corresponds to (m(t) = P1δ(τ − 0) +∑K
j=2Pjδ(τ − aj ) or (m(t) = P1δ(τ − 0)+∑∞j=2Pjδ(τ − aj ))) a linear combination ofK

(or infinite) delta functions ofPj intensity localized at the ends of the chosen interval [0, T ]
and the pointa2, a3, . . . , aK−1 (or a2, a3, . . .), this case corresponds to complete absence of
memory. Thus, it also follows from the above analysis that the exponentν of the fractional
integral corresponds to the fraction of preserved states in the process of evolution of the
considered physical system and encompasses the cases of completely closedν = 1) and
Markov (ν = 0) system when all states degenerate into finitely many with infinitely high
density. An interesting case for analysis isP1 = ξ

1/2
1 , in this caseν = 1

2, which also
corresponds to classical diffusion in quasi-one-dimensional semi-infinite systems, in which
the connection between the concentration and flux is always expressed through an integral
or derivative of only half order [13–15].

From these argument, some physical systems can be described by equations in fractional
derivatives must contain channels belonging to some branching fractal structure. This was
confirmed in [15], in which an ‘ultraslow’ diffusion equation of the following type was
obtained for the main channel:

∂αc

∂tα
= Dx ∂

αc

∂xα
0< α < 1. (35)

The structure of the channels may differ and be generated by definite fractal structure of the
medium. In [16–18], such processes were classified as processes with ‘residual’ memory. A
process with ‘residual’ memory corresponds to the energy principle formulated by Jonscher
[19] for dielectric relaxation in the frequency domain.

From this point of view, transport processes in percolation clusters, fractal trees, and
porous systems really must be reanalysed in order to obtain correct transport equations for
such systems.

From [20–22], for transport phenomena in random media,P(r, t) the average probability
density, that the walker is at distancer at timet from its starting point at timet = 0, i(r, t)
the radial probability current, the relation of i(r, t) andP(r, t) is the following diffusion
equation ∫ t

0
i(r, τ )dτ = rdf−1

∫ t

0
k(t − τ)P (r, τ )dτ (36)

wheredf is the fractal dimension of fractal structure. If the set of timet is a generalized
cookie-cutter set on [0, T ], then from (30),k(t− τ) ' (t− τ)−ν . Then the integral equation
(36) can be written in the following fractional derivative form:

i(r, t) = constant× rdf−1∂
νP (r, t)

∂tν
(37)

where
∂νP (r, t)

∂tν
= 1

0(1− ν)
∂

∂t

∫ t

0

P(r, τ )

(t − τ)ν dτ.

Another large class of physical systems in which one can expect the appearance of
equations in fractional derivatives is represented by processes with loss due to collisions.
We write Newton’s equation in the form

4vi = 1

mi

∫ t

0
Fi(r, p, τ )dτ = t

mi

∫ 1

0
Fi(r, p, ut)du (38)
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wheremi is the mass of particlei, andFi is the force of the interaction of particlei with the
medium. If the interaction with the medium with generalized cookie-cutter fractal structure
is collisional in nature, then the force can be expressed in the form

Fi(r, p, τ ) = Fi(r, p, τ )
∑

Pj1 . . . PjnχEj1···jn (τ )/|Ej1···jn |. (39)

For a force acting for only a definite of the time, we obtain, repeating the arguments of the
previous section,

mi4Vi(t) = A(0(ν))−1
∫ t

0
(t − τ)ν−1miFi(r, p, τ )dτ. (40)

Using the Leibnitz fomula, we can rewrite equation (40) in the more elegant form

mi
dν(4Vi)

dtν
= AFi (ν − 1)!

0(ν)
. (41)

This equation can be used to describe Brownian motion and loss due to collisions.
Similar to [1], the results of the previous section can also be applied to the Liouville

equation.

6. Conclusions

(1) When the generalized cookie-cutter setET on [0, T ] is given, no matter which self-
similar measure (or infinite self-similar measure) the memory measure onET is taken, the
approximate expression (30) and (31) of memory function and flux function is invariable.

(2) From (27), no matter which self-similar measure (or infinite self-similar measure)
the memory measure is taken, the fractional exponentν of fractional integral is determined
only by lnP1/ ln ξ1, while it does not depend on the other weightPj of self-similar measure
(or infinite self-similar measure) and other maps{ϕj }.

(3) The fractional exponentν of fractional integral is equal to the fractal dimensionβ
of generalized cookie-cutter setET if and only if P1 = ξβ1 .

(4) WhenP1 changes from 0 to 1,ν can run over all positive real numbers.
(5) From section 5, the fractional integral associated to the generalized cookie-cutter set

has physical interpretations.
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